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DATA COMPRESSION FOR -MEDIAN PROBLEMS p

 
In this paper we coin data truncation properties of -Median Problem (PMP) instances defined on a bipartite 

graph with m sites and n clients. Both truncations are related to a column (client) of an PMP instance matrix and based 
on the pseudo-Boolean polynomial (pBp) of the PMP. The first truncation is induced by combining of like terms in the 
pBp and the second one is induced by the reduction of pBp degree from 

p

1m −  to . We use our PMP 
representation to explain why some -median problem instances are more difficult to solve to optimality than other 
instances of the same cardinality of feasible solutions sets. Based on the uniqueness of pBp we define instances of this 
problem that are equivalent, in the sense that each feasible solution has the same objective function value in all such 
instances, and provide an efficient description of all equivalent instances by a polytope. We also show that the problem 
of optimal aggregation of pBp terms into the minimum number of aggregated clients is equivalent to the problem of 
finding the maximum cardinality of an antichain defined on the set of partially ordered pBp terms (Dilworth’ 
decomposition theorem). Our computational experiments demonstrate an essential compactification in benchmark 
instances. 

m p−
p

 
1. Introduction 

The p-Median Problem (PMP) is one of well known problems within minisum location-allocation problems. A 
detailed introduction to this problem and solution methods appear in Reese [1] and [2]. For a directed weighted graph 

, with number of vertices ( , , )G V A C= V n= , set of arcs ( , )i j A V V∈ ⊆ × , and weights (distances, similarities, etc) 

, the PMP consists of determining p nodes (the median nodes) such that 1  minimizing 
the total sum of weights to all other nodes of the graph. 

{ ( , ) : ( , )C c i j i j A= }∈ p n≤ ≤

The PMP is a generalization of classical Fermat’s (respectively, Weber’s [3]) problem defined on three 
different points (respectively, weighted points to model client demand) in a plane, with the purpose (objective function) 
to find a median point in the plane such that the sum of the distances from each of the points to the median point 
induced by the triangle spanned on these points is minimized. Hakimi [4, 5] has generalized the Weber problem to the 
problem of finding such a vertex on a graph (absolute median) that minimizes the sum of the weighted distances 
between that absolute median and the vertices of the graph. Hakimi has shown that an optimal absolute median is 
always located at a vertex of the graph, providing a discrete representation of a continuous problem allowing that the 
absolute median may be located at any point along the graph’s arcs. Similarly Hakimi [5] has generalized the absolute 
median to the PMP, again providing a discrete representation of a continuous problem by restricting the set of feasible 
solutions to the vertices. 

Another common model within minisum location-allocation problems is the Uncapacitated Facility Location 
Problem (UFLP), often referred to as the Simple Plant Location Problem (SPLP) (see [6]) or the warehouse location 
problem (see Balinski [7] and Khumawala [8]). The UFLP is similar to the PMP, and the methods used to solve one are 
often adapted to solve the other. The objective function of the SPLP is one of determining the cheapest method of 
meeting the demands of a set of clients {1,..., }J n= from plants that can be located at some candidate sites {1,..., }I m= . 
The costs involved in meeting the client demands include the fixed cost of setting up a plant at a given site, and the per 
unit transportation cost of supplying a given client from a plant located at a given site. The PMP and SPLP differ in the 
following details. First, SPLP involves a fixed cost for locating a facility at a given vertex, and the PMP does not. 
Second, unlike the PMP, SPLP does not have a constraint on the maximum number of facilities. Typical SPLP 
formulations separate the set of potential facilities (sites location, cluster centers) from the set of demand points 
(clients). In the PMP these sets are identical, i.e. I = J. Such problems are well known problems in clustering analysis 
(see Brusco and Kohn [9] and references within). Both problems form underlying models in several combinatorial 
problems, like set covering, set partitioning, information retrieval, simplification of logical Boolean expressions, airline 
crew scheduling, vehicle dispatching (see Christofides [10]), assortment (see [11 – 15]) and is a subproblem for various 
location analysis problems (see Revelle and Laporte [16]). 

An instance of the SPLP has an optimal solution in which each client is satisfied by exactly one plant. A 
similar observation is valid for the PMP. In Hammer [17] this fact is used to derive a pseudo-Boolean representation of 
the SPLP. The pseudo-Boolean polynomial (PBP) developed in that work has terms that contain both a literal and its 
complement. Subsequently, in Beresnev [18] a different pseudo-Boolean form has been developed in which each term 
contains only literals or only their complements. We find this form easier to manipulate, and hence use Beresnev’s 
formulation in this paper which we term as Hammer-Beresnev polynomial. 

Based on the Hammer-Beresnev formulation for the SPLP [19] have derived a pegging rule within a branch-
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and-peg algorithm. The test series reveals the advantage of the suggested branch and peg approach, whose computation 
times are significantly lower than that of comparable branch and bound techniques (see [20]). Goldengorin [21] have 
incorporated the Hammer-Beresnev polynomial in Goldengorin’s data correction approach (see [22]). These authors 
present reduction rules that are significantly more powerful than those suggested by Khumawala [8]. Recently 
Alekseeva [23] have applied the Hammer-Beresnev polynomial for a formulation of the PMP with the purpose to 
analyze the complexity of different local search heuristics. 

The PMP is NP-hard (Kariv and Hakimi [24]), and has many applications in location (see [20] and references 
within) and clustering analysis (see Mirkin [25] and references within). A recent computational study by Avella [26] 
shows that PMP instances with 360,000I J× >  are difficult for commercial MIP codes, mainly due to memory 
restrictions. 

Problem reduction is a very common technique in integer programming and combinatorial optimization; see, 
for example, Andersen and Andersen [27], Crowder [28], Goldengorin [21], Hoffman and Padberg [29], Martin [30], 
Martin [31], Suhl and Szymanski [32]. Classical reductions of PMP instances are based either on reduction tests (see 
Avella and Sforza [33]) or on good lower bounds (see Briant and Naddef [34]). In this paper, we present a reduction of 
PMP instances using a pseudo-Boolean formulation of PMP due to Hammer [17] and Beresnev [18]. 

Since the PMP is NP-hard and many polynomially solvable special cases are well known in the literature (see 
the 1-median problem on a cactus in Burkard and Krarup [35]). In this context Burkard [36, p. 155] presents an open 
problem. For the PMP, this problem can be stated as follows: 

“Suppose we are given a PMP instance defined on a cost matrix C which does not belong to a polynomially 
solvable class of PMP instances. Is it possible to modify C into a cost matrix D belonging to a polynomially solvable 
class of PMP such that an optimal solution to the original problem instance is as close as possible to the optimal 
solution of the modified instance?” 

We show that our pseudo-Boolean formulation allows us to find such modifications if the polynomially 
solvable class of PMP instances is defined algebraically in terms of the elements in its cost matrix. For this, we describe 
the concept of equivalent instances. Moreover, we reduce the problem of finding an equivalent cost matrix D with the 
minimum number of columns to the given matrix C relates to the well known Dilworth’s decomposition theorem (see 
Theorem 14.2 in Schrijver [37]). 

While this paper does not suggest any new algorithm for solving the PMP it presents some fundamental 
properties of PMP derived from the pseudo-Boolean representation of the problem. Our paper is organized as follows. 
In Section 2 of this paper, we adjust the Hammer-Beresnev’s pseudo-Boolean formulation of the Simple Plant Location 
Problem (SPLP) (see Hammer [17]) to the PMP, and show that combining of like terms in the Hammer-Beresnev’s 
pseudo-Boolean polynomial leads to the aggregation of entries in the given PMP instance. In Section 3, based on the 
truncation of degree of Hammer-Beresnev polynomial from ( 1m )− to (m p)− we are further able to aggregate the 
entries of PMP instance by introducing the so called p-truncated columns of the PMP matrix C in Section 3 and use it to 
develop rules for preprocessing PMP instances. We also show that the pseudo-Boolean representation allows us to 
comment on relative difficulties in obtaining provably optimal solutions to different PMP instances. Both sections 2 and 
3 include computational analysis of benchmark instances similar to instances used in [26]. Section 4 defines the concept 
of equivalent instances and describes an algebraic method of modifying the cost matrix of a PMP instance without 
disturbing the optimality of any optimal solution to the original instance. This answers Burkard et al’s open problem 
affirmatively in the context of PMP. It also indicates the relationships with the minimum number of aggregated columns 
and Dilworth’s decomposition theorem. Section 5 summarizes the main results of the paper, and points to directions for 
future research. 

2. A Pseudo-Boolean Formulation of the PMP 
Recall that given sets {1,2,..., }I m= of sites in which plants can be located, {1,2,..., }J n=  of clients, a matrix 
of costs of supplying each [ ]i jC c= j J∈ from each i I∈ , the number p of plants to be opened, and unit demand at 

each client site, the p-Median Problem (PMP) is one of finding a set withS I⊆ S p= , such that the total cost 

,( ) min{ }C i j
j J

f S c i
∈

S= ∈∑  

is minimized. An instance of the problem is described by a m.n matrix [ ]i jC c= and the number 1 p I≤ ≤ . We assume 

that the entries of C are nonnegative and finite, i.e. m nC +∈ℜ . The PMP is thus the problem of finding 
* arg min{ ( ) : , }.CS f S S I S∈ ∅⊂ ⊆ p=                                                        (1) 

An  ordering matrix  is a matrix each of whose columns m n× [ ]i j= π∏ 1( ,..., )T
j m jj

= π π∏  define a 

permutation of 1, . . . ,m. There may exist several ordering matrices for a given instance of the PMP. Given a matrix C, 
the set of all ordering matrices ∏  such that 

1 2
...

i j mj jc c cπ π π j j≤ ≤ ≤ , for 1,...,j n= , is denoted by perm(C). 

Corresponding to an ordering matrix [ ]i j= π∏ , an m n×  difference matrix [ ]i jΔ = δ can be constructed, in 

which 
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11 kk kcπδ =  

( 1)rk r krk k kc c
−π πδ = −  for 2 r m≤ ≤                                                                  (2) 

Defining 
0
1 ,i

if i S
y

otherwise
∈⎧

= ⎨
⎩

 for each i = 1, . . . ,m                                                             (3) 

we can indicate any solution S by a vector 1 2( , ,..., )my y y y= . Its total cost is given by 
1

, 1
1 2 1

( ) { }
rj

kn m

C j kj
j k r

y
−

Π
= = =

Β = δ + δ ⋅∑ ∑ yπ∏                                                             (4) 

Note that a solution y is called feasible if 
1

m

ii
y m p

=
= −∑ . 

In [21] it is shown that the total cost function is identical for all permutations in perm(C). Hence we can 
remove the П in , ( )C yΠΒ  without introducing any confusion. We call this pseudo-Boolean representation of the total 
cost  the Hammer-Beresnev polynomial representation since this representation of the total cost was first 
presented in the context of uncapacitated facility location problems independently in Hammer [17] and Beresnev [18]. 

( )C yΒ

We can formulate (1) in terms of Hammer-Beresnev polynomials as 

*

1

arg min{ ( ) : {0,1} , }
m

m
C i

i

y B y y y m p
=

∈ ∈ =∑ − .                                                  (5) 

Hammer-Beresnev polynomials allow a compact description of p-median problems, since it allows combining 
of like terms. Consider for example, the following PMP instance where m = 4, n = 5, p = 2 and 

7 15 10 7 10
10 17 4 11 22
16 7 6 18 14
11 7 6 12 8

C

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

.                                                                         (6) 

A possible ordering matrix for this problem is given by 
1 3 2 1 4
2 4 3 2 1
4 1 4 4 3
3 2 1 3 2

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

∏  

and the corresponding difference matrix is given by 
7 7 4 7 8
3 0 2 4 2
1 8 0 1 4
5 2 4 6 8

⎡ ⎤
⎢ ⎥
⎢ ⎥Δ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

The Hammer-Beresnev polynomial corresponding to C is 
1 1 2 1 2 4 3 3 4 1 3 4 2 2 3 2 3 4( ) [7 3 1 5 ] [7 0 8 2 ] [4 2 0 4 ]CB y y y y y y y y y y y y y y y y y y y= + + + + + + + + + + + +  

1 1 2 1 2 4 4 1 4 1 3 4[7 4 1 6 ] [8 2 4 8 ]y y y y y y y y y y y y+ + + + + + + + , 
whose terms can be aggregated into the polynomial 

1 2 4 1 2 3 4 1 4 1 2 4 1 3 4 2 333 7 2 2 2 8 4 11 10 4y y y y y y y y y y y y y y y y y y+ + + + + + + + + 4 . 
Note that the original ( )CB y=  has 20 terms including the terms with zero coefficients, and after combining of like 
terms there are just 10 terms. 

Table 1 shows the reductions obtained through combining of terms in Hammer-Beresnev polynomials for 
benchmark PMP instances considered in [26]. The OR, ODM, and TSP instances are available from [38], [34], and 
[39], respectively. Here, m, C, and correspond to notations developed earlier and Reduction refers to the 
reduction in terms obtained due to combining of terms in the Hammer-Beresnev polynomial representation. For 
example, in the pmed15 instance, the cost matrix C had 90,000 entries, while the Hammer-Beresnev polynomial had 
only 17,102 terms, leading to a percentage reduction of ((90000 − 17102)

( )CB y=

× 100)/90000 = 81.00%. 
Hammer-Beresnev polynomials are easily manipulated in computer programs, refer to [19] for details on data 

structures to store and manipulate these polynomials. 
 

Table 1 
Reductions of terms in benchmark instances 
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The number of terms in the Hammer-Beresnev representation of a PMP instance can be further reduced by 

exploiting the fact that for any feasible solution y to the PMP instance, 
1

m

ii
y m p

=
= −∑   Consider for example, the 

Hammer-Beresnev polynomial derived for the PMP instance corresponding to the cost matrix (6). Since p = 2, exactly 
(4 − 2) = 2 of the  will equal zero in any feasible solution. Therefore, each cubic term in the polynomial will evaluate 
to zero, and the truncated polynomial 

iy

, 2 1 2 4 1 2 3 4 1( ) 33 7 2 2 2 8 4C pB y y y y y y y y y= = + + + + + + 4y

y

 
would adequately describe the PMP instance. Notice that this polynomial has only seven terms. Such truncations are 
possible for all PMP instances with and the truncated Hammer-Beresnev polynomial for a PMP instance with 
cost matrix C is given by 

p m≤

1

, 1
1 2 1

( ) { }
rj

m p kn

C p j kj
j k r

y
− −

π
= = =

Β = δ + δ ⋅∑ ∑ ∏                                                              (7) 

We formalize this result through the following theorem. 
Theorem 1. For any PMP instance C with p m≤ the following assertions hold: 1. The degree of truncated 

Hammer-Beresnev polynomial , ( )C p yΒ  is at most m − p; 2. The truncated Hammer-Beresnev polynomial is equal to 
the Hammer-Beresnev polynomial for any feasible solution y to the PMP instance, i.e. ( )C yΒ = , ( )C p yΒ .  

Proof. The assertions follows from the fact that in a PMP instance, exactly p components of any feasible 
solution y equal 0, and therefore, any term in a Hammer-Beresnev polynomial expressed as a product of m − p or more 
components of y will evaluate to zero in any feasible solution. 

Corollary 1. A corollary to Theorem 1 is a reformulation of the definition of PMPs in terms of truncated 
Hammer-Beresnev polynomials. 

Corollary 2. A PMP instance with m possible facilities, n clients, and a cost matrix C can be represented as 

*
,

1

arg min{ ( ) : {0,1} , }
m

m
C p i

i

y B y y y m p
=

∈ ∈ ∑ = −                                                  (8) 

Proof. The proof is trivial. 
Theorem 1 also shows that the largest p entries in any column of the cost matrix C will be not involved in 

obtaining an optimal solution to the PMP. This leads to the following p-truncation operation.  
Definition 1. For any p m≤  the column j of matrix C is called p-truncated if the values of the largest p 

elements in the column are replaced with ( 1) jm p jcπ − + .  

So the 1-truncation of a column (corresponding to p = 1) leaves it unchanged, and a 2-truncation of a column 
replaces the value of its largest element with the value of the second largest element in the column. 

Corollary 3. In a PMP problem instance, every column of PMP matrix C may be p-truncated without affecting 
the optimality of the optimal solution to the instance. 

Proof. The proof is straightforward from Theorem 1 and the discussion above. 
3. Preprocessing PMP Instances 

The p-truncation operation described in the previous section allows us to reduce the search space for an 
optimal solution to a PMP instance. 

Theorem 2. Assume that in a given PMP instance, all the the entries corresponding to a particular row i in the 
cost matrix C are changed when p-truncation operations are performed on all columns of C. Then there exists an 
optimal solution to the instance with . *y * 1iy =

Proof. Consider any column j of C. Since the entry for row i has changed after the p-truncation operation for 
this column, . Hence there will be no term in the truncated Hammer-Beresnev polynomial containing  
that is derived from column j. If this is true for all columns in C, then the truncated Hammer-Beresnev polynomial for 
the instance will not contain any term containing . The result follows from this observation.  

1ij m pπ > − + iy

iy
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Consider for example, the p-median problem instance defined by the cost matrix in (6). If p = 3, the truncated 
cost matrix is given by 

3

7 7 6 7 10
10 7 4 11 10
10 7 6 11 10
10 7 6 11 8

C

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

                                                                          (9) 

Clearly, all the entries in the third row of C have changed as a result of the p-truncation procedure and hence, from 
Theorem 2, there exists an optimal solution with 3 1y =  Setting 3 1y =  immediately solves the problem, so that the 
optimal solution is found to be y = (0, 0, 1, 0). 

Given a cost matrix corresponding to a PMP instance, it is interesting to study the variation in the degree of 
difficulty preprocessing the instance with changing values of p. 

As the value of p increases, the number of entries in any column whose values are revises through p-truncation 
increases. So the higher the value of p is, the more the chance that a row of C is preprocessed out through Theorem 2. 
Let 'p  be the smallest value of p for which the p-truncation of columns of C allow Theorem 2 to be used to preprocess 
at least one row in C. This explains why for 0 / 2p m< , PMP instances with 0p p=  are more difficult to solve than 
instances on the same cost matrix with 0p m p= −  even though the number of feasible solutions to the two are 
identical. 

Also, let *p denote the minimum number of rows in C which contain all the column minima of C. In other 

words, a PMP instance defined on C with *p p> would have open facilities which do not serve any client. Hence, for 

*
1p p> , the number of optimal solutions is bounded below by . So for PMP instances with 

*

1

m p
p

⎛ ⎞−
⎜
⎝ ⎠

⎟
*p p> , it become 

progressively difficult to prove optimality of an optimal solution when the value of p increases from *p  to . 

Then it becomes progressively easier to prove when p increases further. Table 2 presents 

*( ) /m p− 2
'p  and *p  values for 

benchmark instances introduced in table 1. 
 

Table 2 
p′  and p∗  values for benchmark instances 

 
4. Equivalent PMP Instances 

More than one PMP instances can have identical truncated Hammer-Beresnev polynomials since the truncated 
Hammer-Beresnev polynomial allows terms to be aggregated. If two PMP instances do have the same truncated 
Hammer-Beresnev polynomial, then the same solution would have the same cost in the two instances, and hence, the 
same solution would be optimal for both instances. Such instances motivate the following definition. 

Definition 2. Two PMP instances defined on cost matrices C and D are called equivalent if C and D are of the 
same size and if . , ,( ) ( )C p D pB y B y=

Truncated Hammer-Beresnev polynomials of PMP instances can be generated in polynomial time, and have a 
number of terms that is polynomial in the size of the instance. Therefore it is possible to check the equivalence of two 
instances in polynomial time, even though the PMP itself is a -hard problem. NP

Note however that the condition of equivalence is only a sufficient condition for two PMP instances to have 
the same optimal solution. For example, two PMP instances with cost matrices 

3 3
5 5

C
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 and 
1 1
2 2

D
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

and with p = 1 have different truncated Hammer-Beresnev polynomials ( , 1( ) 6 4C pB y y= +  and , 1( ) 2 2D pB y y= + ) but 
the same unique optimal solution, (0, 1). 
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We now consider the set of all PMP instances D that are equivalent to a given PMP instance C. This set can be 
defined as 
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}D{ :m n
C CP D B B×

+= ∈ℜ =                                                                     (10) 
We show that the set can be described by a system of linear inequalities. CP

Let us assume that П,Ψ ( )perm C∈ . The choice of the particular Ψ  and П is unimportant since the truncated 
Hammer-Beresnev polynomials for all permutations within perm(·) are in a PMP instance are identical (see [40]). Let 
the difference matrices corresponding to C and D be CΔ and DΔ  respectively. The truncated Hammer-Beresnev 
polynomial for C is 

1

, 1
1 1 2 1

( )
rj

m p kn n
C C

C p j kj
j j k r

B y y
− −

Ψ
= = = =

= δ + δ ⋅∑ ∑∑ ∏                                                        (11) 

while that for D is 
1

, 1
1 1 2 1

( )
rj

m p kn n
D D

D p j kj
j j k r

B y y
− −

π
= = = =

= δ + δ ⋅∑ ∑∑ ∏                                                        (12) 

For the PMP defined on D to be equivalent to the PMP defined on C, has to equal Equating like terms 

in and , we see that for equivalence, entries in 
, ( )D pB y , ( )C pB y

, ( )C pB y , ( )D pB y DΔ  have to satisfy the following equations: 
From equating constant terms: 

1 1
1 1

0
n n

D C
j j

j j= =

δ − δ =∑ ∑                                                                          (13) 

From equating linear and nonlinear terms: 

1 ( 1) 1 ( 1){ ,..., } { ,..., }

,
j k j j k j

D Ckj k j
− −Ψ Ψ = π π

δ − δ = 0∑      2,..., ;k m p− 1,..., .   j n=                                   (14) =

Further, since П  is a permutation matrix for a PMP instance, ( )perm D∈

0D
ijδ ≥  for  1,..., ;i m=   1,..., .j n=                                                             (15) 

Hence, given a cost matrix C, any solution DΔ  to the set of inequalities (13) – (15) will be a difference matrix 
for an equivalent instance. Given a permutation matrix ( )perm CΨ∈  and a difference matrix DΔ , it is trivial to 
construct the cost matrix D of a PMP instance equivalent to a PMP instance with cost matrix C. 

Remark 1. Note that for a PMP instance defined on a cost matrix D to be equivalent to a PMP instance 
defined on a cost matrix C, perm(D) has to be identical to perm(C). 

Remark 2. Note that we reduce the problem of finding an equivalent matrix D with the minimum number of 
columns to the given matrix C to the following well known Dilworth’s decomposition theorem (see Theorem 14.2 in 
Schrijver [37]): 

“The set of terms with positive coefficients in a pseudo-Boolean polynomial are subsets of partially ordered 
set T, and hence, the minimum number of chains covering  (nothing else as the minimum number of aggregated 
columns of C) is equal to the maximum size of an antichain (the maximum number of non-embedded terms).” 

aT

aT

The maximum size of antichain found for example (6) is equal to three, and the corresponding Hammer-
Beresnev polynomial , aggregated matrix D and one of its permutation matrix П, 2 ( )C pB y= D  are as follows: 

, 2 1 1 4 2 1 2 4 3 4( ) [33 7 4 ] [0 2 2 ] [0 2 8 ]C pB y y y y y y y y y y= = + + + + + + + + , 
with matrices 

33 2 10
44 0 10
44 4 2
40 4 0

D

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 and 

1 2 4
4 1 3
2 3 1
3 4 2

D

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

∏ .                                                          (16)

5. Concluding Remarks and Directions for Future Research 
The size required to represent a p-median problem (PMP) instance is indicated by the size of the cost matrix 

for the instance. It is often possible to represent the instance in a more compact manner. In Section 2 we have presented 
a representation of the PMP through a pseudo-Boolean polynomial called the truncated Hammer-Beresnev polynomial 
which achieves this compactification. This compactification is mainly achieved through the combining of like terms in 
the polynomial, and the truncation of the polynomial to degree m − p for a p median problem with m candidate 
facilities. Computations presented in the section show that the compactification is significant for OR and TSP, but 
negligible for ODM benchmark problem instances. 

In Section 3 we present a preprocessing procedure for p-median problems based on its truncated Hammer-
Beresnev polynomial representation. This representation allows us to perform a p-truncation operation on the cost 
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matrix representing the problem instance, which in turn allows us to remove certain facilities from the consideration set 
for optimal solutions. Additionally, it allows us to explain why certain p-median problem instances are more difficult to 
solve than others. 

In Section 4 we show how we can construct PMP instances that have the same optimal solutions as a given 
PMP instance. These instances are called equivalent instances. Construction of equivalent instances is practically 
useful; given a PMP instance, we can search for an equivalent PMP instance belonging to a known polynomially 
solvable class of PMP instances, solve the equivalent instance easily, and hence come up with an optimal solution to the 
original instance. It also allows us to use data correcting algorithms (see [21] to generate good quality solutions in 
reasonable time). 

It is interesting that the above-mentioned results and properties of PMP derived from its PBP are much more 
difficult to discover from the mathematical programming formulation of PMP (see [26]). 

The paper leads to two interesting courses of future research on p-median problems. The first direction is to 
use the concept of equivalence described here to extend the set of polynomially solvable PMP instances. The second 
direction is to design new exact and heuristic algorithms for solving large-scale instances of PMP based on the 
truncated Hammer-Beresnev polynomial and the preprocessing scheme demonstrated in Section 3. 
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